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Abstract

In extensions of the standard model with a heavy fourth generation one important
question is what makes the fourth-generation lepton sector, particularly the neutrinos,
so different from the lighter three generations. We study this question in the context of
models of electroweak symmetry breaking in warped extra dimensions, where the flavor
hierarchy is generated by the localization of the zero-mode fermions in the extra dimension.
In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana
mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost
entirely Majorana particles, whereas the fourth generation neutrino is mostly a Dirac
fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions
of parameter space where the light neutrino masses and mixings are compatible with
observation. We study the impact of these bounds, as well as the ones from lepton flavor
violation, on the phenomenology of these models.

http://arxiv.org/abs/0912.5219v2


1 Introduction

Perhaps the simplest extension of the standard model is to allow for a chiral fourth generation.

An obvious objection to this addition is the fact that the number of light neutrinos is 3, as

accurately measured for instance in e+e− collisions [1]. Thus, the fourth-generation neutrino

should be at least heavier thanMZ/2, which appears unnatural. Similarly, the fourth-generation

charged lepton should have masses of the O(100) GeV. It is possible to realize this situation in

theories with one compact extra dimension with an AdS metric [2]. In theories of electroweak

symmetry breaking in these backgrounds the Higgs field must be localized close to the so-called

infra-red (IR) brane in order to address the hierarchy problem. The fermion mass hierarchy,

can then be naturally realized by localizing the zero-mode fermions close to or away from the IR

brane. Then, if a fourth generation is added in this scenario, it suffices to localize its zero modes

close to the IR brane in order for them to have large enough masses. This was the construction

used in Ref. [3] where, in addition, the resulting strong couplings of fourth-generation quarks

to KK gluons were used to trigger electroweak symmetry breaking [4]. Since a heavy fourth

generation must have large couplings to the dynamics responsible for electroweak symmetry

breaking, it is natural to consider it in association with strongly coupled TeV-scale physics. The

phenomenology of the strongly coupled quark sector of a fourth generation was studied in this

context in Ref. [5]. However, it is interesting to study the lepton sector of a fourth generation

in warped extra dimensions independently of the origin of the Higgs sector. Recently, the

constraints on a standard model fourth generation have been re-examined [6], leading to the

realization that a chiral fourth generation is allowed by electroweak precision constraints as

long as the Higgs is heavier than in the standard model fits, and the mass differences in the

isospin doublets are kept below MW . Constraints might be even weaker in extensions of the

standard model with a chiral fourth generation.

In this paper we consider theories with one compact extra dimension with AdS metric (AdS5)

assuming the presence of four chiral generations in the bulk. For the most part, we will not need

to assume a specific form of the Higgs sector, as long as the physical Higgs is localized close to

the IR. Thus, most of our discussion applies to the generic model with an IR-localized Higgs, as

well as to composite Higgs models [7] and the fourth-generation condensation scenario [3]. Our

goal is to show that the parameter space in the lepton sector of these models with a heavy chiral

fourth generation results in the correct pattern of neutrino masses and mixings, for acceptable

values of the fourth-generation lepton masses and their mixing with the lighter generations.
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The resulting allowed parameter space in couplings and masses can then be used to study the

phenomenology of these fourth generation leptons at colliders, particularly at the Large Hadron

Collider (LHC).

In the next section we describe the 5D model of fourth generation leptons. We study the

spectrum of the zero-mode leptons, as well as the constraints imposed by light neutrino masses

and mixings, and by the mixing of the fourth generation to the lighter leptons. In Section 3

we consider the constraints arising from flavor-changing processes, such as µ− → e−e+e− and

µ− − e− conversion in nuclei. In Section 2.1 we list the possible representations that leptons

can take in the bulk gauge theory, which we take to be SU(3)c×SU(2)L×SU(2)R×U(1)X [8].

This will be of use when studying the phenomenology of the lepton sector, which is done in

Section 4, where we define the allowed parameter space and show that a typical occurrence in

these models is the appearance of light Kaluza-Klein (KK) modes of leptons. Here we also show

the couplings of the zero-mode fourth-generation leptons to gauge bosons, which will determine

their collider phenomenology. We conclude in Section 5.

2 Fourth Generation Leptons in AdS5

The model we consider here originates from a five-dimensional theory in an AdS background

with the metric defined by [2]

ds2 = e−2σ(y) ηµν dx
µ dxν − dy2 , (1)

where σ(y) = k|y| and k is the AdS curvature, y is the coordinate in the extra dimension and it

is bound to be in a segment between 0 (ultra-violet or UV) and L (IR). The electroweak gauge

group in the bulk is SU(2)L × SU(2)R ×U(1)X , with the hypercharge defined as Y = T 3
R +X ,

where T 3
R is the SU(2)R isospin and X is the charge under U(1)X [8]. The bulk gauge symmetry

is broken down to the SM gauge group by boundary conditions in the UV which lead to

SU(2)R × U(1)X → U(1)Y . However, as we will show below, many properties of the lepton

model are independent of the choice of SU(2)R embedding for the fermions.

We consider four generations of leptons propagating in the 5D bulk:

ξli , ξνi , ξei ; i = 1, . . . 4. (2)

with corresponding bulk 5D masses cil,ν,e in units of the AdS curvature k . The boundary

conditions allow us to obtain a spectrum of zero modes that reproduces the SM lepton spectrum,
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plus a SM-like fourth generation with the SU(2)L doublets arising from ξl and singlets from

ξν,e.

Since the SU(2)R × U(1)X gauge symmetry is broken to U(1)Y by boundary conditions in

the UV, a Majorana mass for bulk fermions transforming under SU(2)R can only be added on

the UV boundary. So we introduce a UV-localized Majorana mass term for the right-handed

neutrino of the form

S0 =

∫

dx4dy
√
g

(

−1

2
ξ̄νcR MUV ξ

ν
R + h.c.

)

δ(y)

ΛUV
, (3)

where MUV is a 4 × 4 matrix, generation indexes are suppressed and ΛUV is the UV cutoff,

typically the Planck mass MP .

We also consider Dirac masses for the leptons in the 5D bulk. These arise from their 5D

Yukawa interactions with the Higgs doublet

L5 = −λν ξ̄lHξν − λeξ̄
lHξe + h.c. , (4)

with λν,e being 4 × 4 matrices and the Higgs H localized towards the IR. In the scenario of

Ref. [3] the Higgs arises from the condensation of the zero-mode quarks of the fourth generation,

but our treatment of the fourth generation lepton sector is general, and will remain independent

of the details of the Higgs sector unless specified.

In general we will see that the zero-mode spectrum furnishes a complete representation of

the SM gauge symmetry instead of the full 5D gauge symmetry, since in most cases SU(2)R

is only broken in the UV boundary. The only exception is the case where the 5D field ξν is a

singlet under all gauge interactions, thus allowing a Majorana term in the IR. We will treat

this case separately. but in general our results will be independent of the SU(2)R embedding

unless we state otherwise.

The mixing of the zero-modes with the KK modes is not important for the discussion of the

zero-mode spectrum, but its effects will be considered in Section 4. After the Higgs acquires a

vacuum expectation value (VEV), integrating over the extra dimension Eqs. (3) and (4) leads

to

Lmass = −1

2
ν̄cR Mν

RR νR − ν̄LM
ν
LRνR − ēLM

e
LReR + h.c. , (5)

where generation indexes are understood, and for notational simplicity we have hidden the

super-index (0) labeling the zero-modes. The mass matrices MRR and Me,ν
LR depend on the

Higgs and fermionic zero-mode wave functions and will be computed in the next section.
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In order to obtain the observed spectrum and mixings, we have to select the localization of

the zero-modes in the extra dimension. As usual in 5D theories, the localization of the zero-

modes is determined by the bulk mass parameters cil,ν,e in such a way that, with O(1) variations

in them, we can change the localization from the UV to the IR boundary [9, 10]. Since left-

handed leptons form a SU(2)L doublet, within each generation eL and νL must have the same

localization. In addition, to obtain a pattern of neutrino mixings among the light generations

compatible with observations, the overlap between the wave-functions of the left-handed zero-

mode leptons and the Higgs has to be of the same order for the first three generations. This

can be done, for example, by choosing localizations towards the IR, with −1/2 < cil < 1/2.

However, since in the present model the fourth generation is also localized towards the IR, this

scenario would lead to large mixings of the three light generations with the fourth generation.

To avoid this, we will localize the left-handed fermions of the first three generations near the

UV boundary, cil ∼ 0.6. In this case the left-handed leptons have an exponentially suppressed

overlap with the Higgs. Thus, to obtain same order Yukawas for the light generations, we

impose that all the left-handed bulk leptons leading to the light generations have the same

localization. This corresponds to

cil = cl , i = 1, 2, 3 . (6)

The requirements on the right-handed neutrinos of the first three generations are that they

have to be somewhat UV-localized but not too close to the UV so that their Majorana mass is

not too large (∼ MP ) compared to the needed value for a successful see-saw mechanism. We

will next discuss the specific values of ciν that satisfy this constraint, but for now we can see

that in order to obtain a single effective Majorana mass scale in the effective 4D theory of three

generations of light neutrinos, we need to impose ciν = cν for i = 1, 2, 3. These assumptions can

be cast as the presence of a global family symmetry in the 5D bulk involving the first three

generations [11, 12]. Finally, to obtain a heavy fourth generation of leptons we allow l4L and

ν4R to have different localizations from the ones chosen above for i = 1, 2, 3, which as we show

below must be toward the IR brane. Throughout we consider anarchic Yukawas λν,e, meaning

that all the entries of these matrices are of the same order: λijν,e = O(1), for i, j = 1, 2, 3, 4.

Also for simplicity, we choose the UV-localized Majorana mass matrix as MUV =MR →MR1,

with MR a number of order ∼MP .

4



2.1 5D Lepton Embeddings

To complete the 5D model, we consider here the possible embedding of the lepton sector in

the 5D bulk gauge theory SU(3)c × SU(2)L × SU(2)R × U(1)X . As we will see in Section 4,

some phenomenological details depend on such embeddings. On the other hand, there are some

generic features of the model which are mostly independent of the chosen lepton representation

in the 5D bulk. We start by pointing out that the Higgs is a (2, 2)0, with 〈H〉 ∝ 12×2.

Therefore, the requirement that the mass term (4) be a singlet, determines the transformation

properties of the leptons.

Embedding 1

A possible choice of bulk lepton representation under SU(2)L × SU(2)R × U(1)X can be

ξli = (2, 1)−1/2; ξνi = (1, 2)−1/2; ξei = (1, 2)−1/2. (7)

The boundary conditions can be schematically written as

ξl =
[

ξlL(++) ξlR(−−)
]

, ξν =

[

ξνL =

[

ν ′L(−−)
e′L(+−)

]

ξνR =

[

νR(++)
e′R(−+)

] ]

,

ξe =

[

ξeL =

[

ν
′′

L(+−)
e
′′

L(−−)

]

ξeR =

[

ν
′′

R(−+)
eR(++)

] ]

, (8)

where (++) refers to Newman boundary conditions on both the UV and the IR branes, (−−)

to Dirichlet boundary conditions, etc. If we consider the Higgs localized in the IR, Eq. (4) leads

to

Lmass = ξ̄lL(mνξ
ν
R +meξ

e
R)|L1 + h.c. = [ν̄L(mννR +meν

′′

R) + ēL(mνe
′
R +meeR)]|L1 + h.c. , (9)

with ξltL = (νL, eL) and me,ν = λe,νv/
√
2.

Embedding 2

Another possibility is

ξl = (2, 2)−1 =

[

LL(++) LR(−−)
L′
L(−+) L′

R(+−)

]

; (10)

ξν = (1, 3)−1 =



 ξνL =





ν
′′

L(−−)
e
′

L(+−)
χL(+−)



 ξνR =





νR(++)
e′R(−+)
χR(−+)







 ; (11)

ξe = (1, 1)−1 =
[

e
′′

L(−−) eR(++)
]

, (12)
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where L and L′ are the SU(2)L doublets with T 3R = ±1/2 respectively, contained in ξl. The

boundary conditions for L account for the zero-mode SM doublet, whereas L′ does not have

zero-modes and gives rise to exotic KK leptons with electric charge Q = −2, as well as ξν.

After EWSB the fermions with equal charges are mixed by the Higgs VEV.

Embedding 3

Similar to embedding 2, but:

ξe = (1, 3)−1 =



 ξeL =





ν
′

L(+−)
e
′′

L(−−)
χ′
L(+−)



 ξeR =





ν ′R(−+)
eR(++)
χ′
R(−+)







 . (13)

Embedding 4 In this case the 5D leptons are:

ξl = (2, 2)0 =

[

L′
L(−+) L′

R(+−)
LL(++) LR(−−)

]

; (14)

ξν = (1, 3)0 =



 ξνL =





χL(+−)
ν

′′

L(−−)
e′L(+−)



 ξνR =





χR(−+)
νR(++)
e′R(−+)







 ; (15)

ξe = (1, 3)0 =



 ξeL =





χ′
L(+−)
ν

′

L(+−)
e
′′

L(−−)



 ξeR =





χ′
R(−+)
ν ′R(−+)
eR(++)







 , (16)

where L′ and L are the SU(2)L doublets with T 3R = ±1/2 respectively, contained in ξl.

Embedding 5

Similar to embedding 4, but now ξν is a 5D singlet.

ξν = (1, 1)0 =
[

ν
′′

L(−−) νR(++)
]

. (17)

Unlike for the previous four embeddings, in this case it is possible to have Majorana mass

terms in locations other than the UV boundary, since ξν is a gauge singlet. In particular, it is

possible to write a Majorana mass term in the IR,MIR. This will result in an order-one splitting

of the masses of the Majorana components of the fourth-generation zero-mode neutrinos. As a

result, in this embedding the fourth-generation zero-mode states are Majorana neutrinos, just

as the first three-generation neutrinos. We will consider their spectrum in more detail below.
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2.2 Charged leptons

Charged lepton masses are determined by the overlap of the left-handed and right-handed zero

modes with the IR-localized Higgs. Their mass matrix is given by

Me,ij
LR = m1λ

ij
e f(c

i
l)f(−cje)α(cil,−cje) , (18)

f(c) =

[

1− 2c

1− x1−2c

]1/2

, x = e−k L , (19)

where the the functions α and m1 describe the Higgs localization and the Higgs VEV, re-

spectively. For instance, if the Higgs arises from the condensation of the zero modes of the

fourth-generation quarks, m1 and α are defined by [3]

m1 =
〈ū4(0)L u

4(0)
R 〉

k2 x2

(

k

MP

)3

, (20)

α(ci,−cj) =
f(c4q)f(−c4u)(1− x4−cq+cu−ci+cj)

(4− cq + cu − ci + cj)
. (21)

On the other hand, if the Higgs arises from the zero-mode of a fundamental 5D scalar field we

have

m1 = 〈H〉 , (22)

α(ci,−cj) =
(1− x2+β−ci+cj)

√

2(1 + β)

(2 + β − ci + cj)(1− x2+2β)1/2
, (23)

with β a function of the the 5D Higgs mass: β =
√

4 +m2
HL

2, (see for example Ref. [13]).

The masses of the charged leptons depend on the localization of the right-handed component,

eiR, that is controlled by the bulk mass parameter cie. The left-handed components of the light

generations are almost delocalized, in such a way that we can obtain a light electron (a heavy

τ−) by localizing its right-handed component towards the UV (IR). To obtain a heavy fourth

generation lepton both chiralities of e4 must be localized towards the IR. The charged-lepton

mass matrix Me
LR is diagonalized as usual, by left and right unitary transformations Ae

L,R, such

that the diagonal mass matrix is

Me
D = UL†Me

LRU
R . (24)

The size of the mixings among the zero modes determines the size of the flavor-violating

processes. Using Eq. (18) we expect the mixings to be of order [14, 15, 16]

UL
ij ∼

min[f(cil), f(c
j
l )]

max[f(cil), f(c
j
l )]

, UR
ij ∼ min[f(−cie), f(−cje)]

max[f(−cie), f(−cje)]
, (25)
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In the scenario with cil ≃ cl, since the Yukawas are all of the same order, there are no suppression

factors in the mixings between the left-handed components of the light generations:

UL
ij ∼ O(1) , i, j = 1, 2, 3. (26)

In fact, we have enforced this result by adjusting the localization of left-handed components

of the light generations. On the other hand, using Eq. (18) and f(cil) ≃ f(cjl ), we expect the

mixings between the right-handed components of the light generations to be of order

UR
ij ∼ min[mi, mj]

max[mi, mj ]
, mi,j = me, mµ, mτ . (27)

Thus we obtain a hierarchical UR with small mixings between the light generations.

Since both the left- and right-handed components of e4 are localized towards the IR, the

mixings between the light generations and e4 are of order:

UL
i4 ∼

f(cil)

f(c4l )
, UR

i4 ∼ f(−cie)
f(−c4e)

, i = 1, 2, 3. (28)

In our model the τR has to be almost delocalized in order to obtain the correct value of mτ .

Therefore, the mixing between τR and e4R can be rather large, as can be seen from Eq. (28). In

our numerical scan (see next sections) we obtained

UL
τ4 ∼

1

2

√

mτ

me4
, UR

τ4 ∼ 2

√

mτ

me4
. (29)

The large mixing UR
τ4 arises as a consequence of the rather large τ -mass and the partial UV

localization of τL. This result has important phenomenological consequences for e4 FCNC

decays, as we will discuss in Section 4.2.

2.3 Neutrinos

In what follows we consider the neutrino spectrum for embeddings 1 to 4. The case of embedding

5 will be consdered separately. There are two mass terms for the neutrinos: a Majorana mass

for the right-handed components, which will affect almost exclusively the ones localized in the

UV; and a Dirac mass determined by the overlap with the IR-localized Higgs, as seen in Eq. (5).

The Dirac mass is given by Eq. (18), changing the index e→ ν. On the other hand, the effective

Majorana mass matrix for the zero-mode right-handed neutrinos can be written as

Mν,ij
R ≃ O(1) k F (−ci)F (−cj) , F (c) =

[

2c− 1

1− x2c−1

]1/2

. (30)
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The spectrum of the light SM neutrinos is generated by the usual see-saw mechanism. As dis-

cussed above, the left-handed components of the first three generations are almost delocalized.

The right-handed components have bulk mass parameters in the range

− 0.4 . ciν . −0.28 i = 1, 2, 3 . (31)

leading also to wave functions in the bulk, although somewhat more localized towards the UV.

Since we want a heavy fourth generation neutrino, we have to localize ν4R towards the IR, in

order to avoid the effect of the UV-localized Majorana mass, which would result in an unwanted

see-saw and a light ν4. Due to the exponential localization of the right-handed neutrino, the

mass of ν4 has a strong dependence on c4ν (the left-handed component is localized in the IR

to obtain a heavy e4). In Fig. 1 we show mν4 as a function of c4ν , for different values of

c4l = −0.4, 0, 0.4. We have fixed MUV = 0.3 k, all the Yukawas are equal to unity, and we

have neglected the mixings between generations for simplicity. 1 For c4ν . 0, ν4R has a sizable

overlap with the UV and the see-saw mechanism becomes efficient, resulting in two Majorana

neutrinos: one that is very light, and another one very heavy. For c4ν & 0 the Majorana term

becomes small enough and the Dirac mass dominates, resulting in both Majorana neutrinos

being almost degenerate, or effectively in a Dirac fermion ν4.

The right-handed neutrinos of the first three generations νe,µ,τR , being localized towards the

UV, have a very large effective Majorana mass (∼ 10−5MP l, depending on cν). For this reason

we integrate them out using the tree level equations of motion. The effective theory contains

five Majorana neutrinos, three very light that reproduce the SM spectrum, and two almost

degenerate heavy neutrinos which constitute an effective Dirac fourth-generation neutrino, as

shown in Figure 1. The mass term of the effective theory can be written as

Leff = −1

2
N̄MeffN

c + h.c. (32)

where N is defined by

N t = (νeL, ν
µ
L, ν

τ
L, ν

4
L, ν

4 c
R ) , (33)

and Meff is the effective mass matrix, that can be written in terms of the elements of Mν
RR

and Mν
LR defined in Eq. (5), as shown in Appendix A. The neutrino spectrum is given by the

1For a heavy neutrino, the mixings are very small, thus we do not expect important corrections in Fig. 1
from their effects.
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Figure 1: Mass of the heavy fourth generation Majorana neutrinos, as a function of c4ν. The
different lines correspond to different values of c4l = −0.4, 0, 0.4. For c4ν fixed, the larger mν4

corresponds to the smaller c4l , since in this case ν4L is more localized in the IR. As long as ν4R
is near the UV, the Majorana mass becomes large, and the see-saw mechanism starts working,
splitting the neutrinos in two: one very light and another very heavy, this happens for c4ν . 0.

eigenvalues of Meff and the neutrino mass-eigenstates by the eigenvectors of Meff . Thus we

diagonalize Meff with an orthogonal transformation Uν defined by

Mν
D = UνtMeffU

ν . (34)

Expanding in inverse powers of the large Majorana massMν,ij
R , with i, j = 1, 2, 3, the eigenvalues

and eigenvectors corresponding to the heavy Majorana neutrinos, with masses ∼ O(300) GeV,

are given by:

mν
4,5 = (

4
∑

i=1

Mν,i4
LR M

ν,4i
RL )1/2 , (35)

Ñ4,5 = (Mν,14
LR ,Mν,24

LR ,Mν,34
LR ,Mν,44

LR ,±mν
4,5)

1

mν
4,5

√
2
, (36)

Thus, at leading order the heavy Majorana neutrinos Ñ4 and Ñ5 are degenerate, as adver-

tised earlier and shown in Figure 1. It is possible to obtain similar expressions for the light

eigenvectors and eigenvalues. We show these results in Appendix A.

The wealth of neutrino data collected in the last decade results in important constraints on

these models through the precise measurements of neutrino mass differences and mixing angles.
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We now explore the possibility of reproducing these data in the model described above, with

anarchic Yukawa couplings 2. In the present scenario, considering only zero-mode fermions

and integrating out the heavy right-handed neutrinos of the first three generations, we are left

with four charged leptons and five Majorana neutrinos, as mentioned earlier. Then the charged

current interactions in the physical basis are given by

LCC =
∑

α,a

∑

n

gn√
2
W+(n)

µ ν̄aLγ
µVaαe

α
L + h.c. , (37)

where W (n) and gn are the KK W ’s and their couplings respectively, with g0 = g and gn/g0

depending on the localization of the zero-mode leptons: for the light (heavy) generations g1/g0 ∼
O(0.1) (∼

√
2kπr ∼ O(10)). V is the 5 × 4 mixing matrix that can be expressed in terms of

the neutral and charged rotation matrices Uν and UL:

Vaα =

4
∑

i=1

(Uνt)aiU
L
iα , a = 1, . . . 5 , α = 1, . . . 4 . (38)

The rotation matrix Uν
5×5 is orthonormal, whereas UL

4×4 is unitary. The mixing matrix V

satisfies the following constraints

(V †V )αβ = δαβ , (V V †)ab = δab − (Uνt)a5U
ν
5b . (39)

Using the results of Eqs. (35) and (36) one can show that, to leading order, Eq. (39) reduces

to:

(V V †) =





13×3 0

0

[

1/2 1/2
1/2 1/2

]



 (40)

If we consider only the first three generations, we can impose that V reproduces the observed

neutrino mixing matrix. On the other hand, the mixings between zero-modes of the fourth

generation and the light leptons of the first three generations are mostly determined by the

localization of the left-handed wave functions. They are experimentally constrained, mostly

from the decay µ− → e−γ, which receives new contributions induced by the presence of the

new neutrinos running in the loop, as well as by the lack of unitarity of the 3×3 mixing matrix.

2 However, we want to stress that this is not the full anarchic approach, since we have imposed a partial
global flavor symmetry relating some of the 5D leptonic masses, as shown in Eq. (6). Had we considered anarchic
5D masses, we would have obtained hierarchical mixing, in contradiction with observation.
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The contribution of a neutrino, with Dirac and right-handed Majorana masses, to the decay

µ− → e−γ can be written as [17]

Ti = V †
µiVieH(m2

i /m
2
W ) (41)

H(x) =
1

3(x− 1)4
(10− 43x+ 78x2 − 49x3 + 4x4 + 18x3 log x) , (42)

leading to a branching fraction

BR(µ→ eγ) =
Γ[µ → eγ]

Γ[µ→ eνν̄]
=

3α

32π
|
∑

i

Ti|2 . (43)

In the present model we have to sum over i = 1, . . . 5, with mi ≪ mw for i = 1, . . . 3. We obtain

5
∑

i=1

Ti ≃
∑

i=1,23

V †
µiVie

[

H(0) +H ′(0)
m2

i

m2
W

]

+
∑

i=4,5

V †
µiVieH

(

m2
i

m2
W

)

. (44)

In the SM only the first sum is present, and the GIM mechanism cancels the first term in the

square brackets:
∑3

i=1 V
†
µiVie = 0. In the present case we have instead

∑

i=1,23

V †
µiVie = −

∑

i=4,5

V †
µiVie . (45)

which leads to

5
∑

i=1

Ti ≃
∑

i=4,5

V †
µiVie

[

H

(

m2
i

m2
W

)

−H(0)

]

+ . . . , (46)

where the dots stand for a SM type contribution, which can be neglected since is very small

compared to the current bounds. Inserting Eq. (46) into (43) we obtain an upper bound for

|V4α| and |V5α| in the present model. Taking as a reference value [1] BR(µ− → e−γ) . 10−11

we obtain

Vµ,i ∼ Ve,i . 10−2, i = 4, 5. (47)

In the next section we will consider additional constraints from FCNC effects.

2.4 Model Parameter Scan

We have scanned over the model parameter space in order to find solutions compatible with

all the available constraints. In our scan we have considered the following range for the 5D

parameters:
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• 5D Yukawa couplings of order O(1): −2 ≤ λije,ν,R ≤ 2,

assuming real Yukawas for simplicity,

• 5D bulk mass parameters:

0.6 ≤ cl ≤ 0.65, −0.4 ≤ cν ≤ −0.28, 0.4 ≤ cie ≤ 0.72

−0.5 < c4l < 0.5, 0 ≤ c4ν < 0.5, −0.5 < c4e < 0.5

Finally, we considered k e−kL = 1 TeV (except in the cases where we explicitly mention a larger

KK scale), and assumed a Higgs arising from the condensation of the quarks of the fourth

generation, see Eqs. (20) and (21), with c4q < 0 and c4u > 0. We observe that in this region of

parameter space, it is possible to obtain lepton masses and mixings between the light states

compatible with experiment. The same solutions result in fourth generation-leptons heavy

enough to have evaded direct detection bounds. We have also studied the amount of tuning in

the space {cil, ciν}, i = 1, 2, 3, needed to obtain the right pattern of mixings. We have allowed a

small random variation of the 5D masses in our numerical scan: {cil = cl+∆i
l, c

i
ν = cν+∆i

ν}. Our

results show that, in order to satisfy the constraints, ∆ can not be larger than ∆i
l ∼ ∆i

ν ∼ 0.01.

As a benchmark point in the parameter space of 5D masses we consider

cl = 0.59 , cν = −0.34 , ce = −0.73 , cµ = −0.61 , cτ = −0.52 ,

c4l = 0 , c4ν = 0.30 , c4e = 0.35 . (48)

In Appendix B we show an example of a specific solution satisfying all the constraints.

2.5 Neutrino Spectrum in Embedding 5

We discuss here the spectrum of zero-mode neutrinos in Embedding 5, presented in Section 2.1.

In it the right-handed neutrino zero-modes come from ξν which transforms as (1, 1)0 under

SU(2)L × SU(2)R × U(1)X . This choice allows the presence of a Majorana mass term in the

IR brane

SIR =

∫

dx4dy
√
g

(

−1

2
ξ̄νcR MIRξ

ν
R + h.c.

)

δ(y − L)

ΛUV
, (49)

which induces a Majorana mass

M ij
IR = O(1) (ke−kL) f(−ci)f(−cj) (50)
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for the zero-mode neutrinos. Since the first three-generation neutrinos are UV-localized they

will not be significanty affected by MIR. Thus the effect ofMIR can be schematically described

by

L = −1

2
ν̄4RMIRν

4c
R − ν̄4LM

4
LRν

4
R + h.c. (51)

where M4
LR is the zero-mode Dirac mass for the fourth-generation neutrino, and we have ne-

glected mixing with the lighter generations. This leads to a splitting between the two Majorana

states induced by MIR, which is typically of order one. The light state is an admixture of ν4L
and ν4R, but it has typically a larger fraction of ν4L as long as MIR > M4

LR. The lighter state

could be rather light given that there is a mild see-saw controlled by MIR. For instance, it is

quite natural in this embedding to consider a lighter Majorana states with masses as small as

100 GeV.

3 Constraints from Flavor Violation

In this section we study the constraints on these models from lepton flavor violation. The

bounds from the dipole operator inducing µ− → e−γ were shown in the previous section. Here

we concentrate on flavor violating decays of the charged leptons, such as µ− → e−e+e− and

µ− − e− conversion in nuclei. As we show below, there is also a significant contribution to the

decay of e4 through FCNC, resulting in e4 → τ−f f̄ , with f a SM light fermion.

We consider the effects from the interactions between the would-be zero-mode leptons and

the neutral vector bosons, neglecting the effects from Higgs boson exchange since they are

suppressed by the small SM lepton masses3. Although the couplings between the KK vector

bosons and the leptons are not universal due to the generation-dependent localization of the

leptons, the neutral-current interactions are diagonal in the flavor basis before electroweak

symmetry breaking (EWSB)

LNC =
∑

a

∑

n

Z(n)
µ ēaγµ(gLnaPL + gRnaPR)e

a , (52)

where gL,R0a = gL,RSM is the usual SM Z-coupling. After EWSB, the Z boson arises primarily from

the mixing between the zero and the first KK neutral modes, Z(0) and Z(1) (we neglect the

mixing with the heavier KK-modes for simplicity in this analysis). Diagonalizing the vector

3See Refs. [14, 15, 16, 19] for FCNC effects arising from the Higgs in composite Higgs models.

14



boson mass matrix, the physical Z boson at leading order is given by

Z = Z(0) − f
m2

Z

m2
KK

Z(1) , (53)

where f ∼
√
2 kL ∼ O(10) is a factor parametrizing the mixing, and in general has a mild

dependence on the Higgs localization. Thus, since the Z boson has a sizable projection over

the first KK mode, the neutral lepton interactions are not universal after EWSB. In order to

obtain the neutral interactions for the mass eigenstates we rotate the flavor basis in (52), which

results in

LNC =
∑

a,b

[

Zµē
aγµ(gLabPL + gRabPR)e

b +
∑

n

Zn
µ ē

aγµ(gLnabPL + gRnabPR)e
b

]

, (54)

where Zn stands for the heavy neutral vectors arising from the mixed KK modes. The flavor-

violating Z couplings in the mass eigenbasis are given by

gL,Rab = −f m2
Z

m2
KK

(UL,R†GL,RUL,R)ab , GL,R = diag(gL,R1e , gL,R1µ , gL,R1τ , gL,R14 ) , (55)

where gL,R1a are the diagonal flavor dependent couplings with Z(1), defined in Eq. (52).

The flavor-violating couplings relevant for the µ− − e− transitions are determined by

(UL,R†GL,RUL,R)eµ = UL,R†
12 (gL,R1µ − gL,R1e )UL,R

22 + UL,R†
13 (gL,R1τ − gL,R1e )UL,R

32 +

UL,R†
14 (gL,R1e4 − gL,R1e )UL,R

42 , (56)

where we have used the unitarity of the rotation matrices. There are similar expressions for

the other flavor-violating neutral interactions (UL,R†GL,RUL,R)αβ, α 6= β.

Using the estimates of Section 2.2 we can obtain the size of the flavor-violating couplings.

From (56) we see that for the choice cil = cl, i = 1, 2, 3, the couplings gL1i have the same value

for the light generations and the only contributions to flavor-violating processes in the left-

handed sector are due to the fourth generation. Allowing for small departures from universal

localization, cil = cl + ∆i
l, we also obtain contributions from the light generations. Using the

results from our numerical scan allowing ∆i
l ∼ 0.01, the contributions to FCNC processes

relevant for µ− − e− transitions come from the flavor-violating factors

UL†
12 (g

L
1µ − gL1e)U

L
22 ∼ 1

2
× 10−3gL × 1

2
∼ 10−4gL , (57)

UL†
13 (g

L
1τ − gL1e)U

L
32 ∼ 1

2
× 10−3gL × 1

2
∼ 10−4gL , (58)

UL†
14 (g

L
1e4 − gL1e)U

L
42 ∼ 10−2 × 5gL × 10−2 ∼ 5× 10−4gL . (59)
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In (59) we have considered the fact that e4L is not completely localized in the IR, and for this

reason the coupling with the KK vector is somewhat smaller than f , gL14 ∼ f/2 ∼ 5. On the

other hand, since the light generations are localized towards the UV, their couplings to the

KK vectors are suppressed by: gL1i ∼ 1/f ∼ O(0.1) for i = 1, 2, 3. The dominance of the e4

contribution suggested by Eqs. (57-59) is confirmed in our more detailed numerical studies.

Similarly, we can obtain contributions of the right-handed sector, given by

UR†
12 (g

R
1µ − gR1e)U

R
22 ∼ me

mµ

× 10−3gR × 1 ∼ 10−5gR , (60)

UR†
13 (g

R
1τ − gR1e)U

R
32 ∼ me

mτ
× 0.1gR × mµ

mτ
∼ 10−5gR , (61)

UR†
14 (g

R
1e4 − gR1e)U

R
42 ∼ me

me4
× 5gR × mµ

me4
∼ 5× 10−5gR . (62)

Again e4 gives the dominant contribution. We also note that the flavor-violation effect in the

left-handed sector is an order of magnitude larger than the one coming from the right-handed

sector. Taking into account all O(1) coefficients, a numerical scan results in (UR†GRUR)eµ ∼
1/3× 10−4.

The most stringent constraints come from the upper limits for µ− → e−e+e− decay branch-

ing ratio, and from the µ− − e− conversion rate in nuclei. Following the analysis of [20] and

[21], we define the relevant effective couplings by

−Leff =
4GF√

2
[ g3(ēRγµµR)(ēRγµeR) + g4(ēLγµµL)(ēLγµeL)

+ g5(ēRγµµR)(ēLγµeL) + g6(ēLγµµL)(ēRγµeR) ] + h.c. . (63)

with GF the Fermi constant. Normalizing to the µ− → e−ν̄ν branching ratio, we can write the

branching ratio for µ− → e−e+e− as

BR(µ− → e−e+e−)

BR(µ− → e−ν̄ν)
= 2(|g3|2 + |g4|2) + |g5|2 + |g6|2 . (64)

The current experimental limit is BR(µ− → e−e+e−) < 10−12 [1]. The µ−− e− conversion rate

in nuclei is given by [21, 22]:

Bconv(µ− e) =
2peEeG

2
Fm

2
µα

3Z2
effQ

2
N

π2ZΓcapt
(|gLeµ|2 + |gReµ|2) , (65)

where gL,Reµ are the flavor-violating Z couplings defined in (55) and α is the fine structure

constant. The other factors depend on the specific nuclei involved in the reaction and can be
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found in Ref. [22]. The most constraining limits arise from the SINDRUM II experiment at

PSI using Au. The corresponding bound is Bconv(µ
− − e−) < 0.7× 10−12, at 90% C.L. [1].

In order to obtain the model predictions for the conversion rate, we consider both the

contributions from the Z as well as from the neutral KK vectors in (54). From (55) the

dominant contributions to the effective couplings g3−6 are given by

g3 ≃
gR

mKK2

(

f − gR1e
gR

)

(UR†GRUR)eµ, g4 ≃
gL

mKK2

(

f − gL1e
gL

)

(UL†GLUL)eµ,

g5 ≃
gL

mKK2

(

f − gL1e
gL

)

(UR†GRUR)eµ, g6 ≃
gR

mKK2

(

f − gR1e
gR

)

(UL†GLUL)eµ, (66)

where, in each case, the first term comes from Z exchange and the second one is from direct

KK exchange. The latter can be neglected since f ≫ gL,R1e /gL,R, just as for the case with three

generations [21].

The experimental bounds can now be used constrain mKK . Making use of the naive esti-

mates of Eqs. (57-62) and the results of (66) in Eqs. (64) and (65), we obtain:

BR(µ− → e−e+e−) : mKK & 4 TeV , B(µ− − e−)conv. : mKK & 6 TeV . (67)

A more precise statement about the experimental constraints on the KK scale can be obtained

scanning over the parameter space defined in Section 2.3, using the benchmark point of Eq. (48).

The results are in Figure 2 (a), where we show the predictions of the model for µ− → e+e−e−

and µ− − e− conversion in terms of the ratios to the experimental bounds, R(µ− → e−e+e−)

and R(µ−−e−)conv.. The points in the plot correspond to different sets of anarchic 5D Yukawas

that reproduce the observed spectrum and mixings and also satisfy the µ− → e−γ bounds of

(47). We have also allowed a small violation of universal localization for the left-handed light

leptons, ∆i
l,ν ∼ 0.01.

The 90% C.L. region allowed by both experiments is the lower left corner. Note that for

mKK = 2.4 TeV (red points) almost no configuration satisfies the experimental constraints,

whereas for mKK = 6 TeV (black crosses) a sizable number of the solutions lie within the

limits. The most stringent constraint comes from µ− − e− conversion. If we only consider the

bound from µ− → e−e+e−, a portion of the parameter space with mKK = 2.4 TeV is allowed.

Figure (2) (a) points to mKK & 6 TeV, introducing a little hierarchy that renders the model

somewhat unnatural. However, the naive choice of parameters resulting in Figure (2) (a) is

not an optimal one. As noted above, the largest contributions arise from the left-handed flavor

violating interactions, at least one order of magnitude larger than the right-handed ones. It is
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Figure 2: Predictions for µ− → e−e+e− and µ−e− conversion normalized to the experimental
limits. The points correspond to different sets of 5D parameters compatible with lepton flavor
data and satisfying the constraints from µ → eγ in (47). The dots (red), triangles (blue) and
crosses (black) correspond to mKK = 2.4, 4, 6 TeV. The horizontal and vertical lines are the
experimental bounds. On the left we show the results for the region of the parameter space
defined in Section 2.3. On the right we show the results when the localization is chosen so that
left-handed and right-handed contributions are of the same order. The dispersion in this case
is due to different sets of Yukawas ∼ O(1) and to small variations in the 5D fermion masses:
∆i ∼ 0.01.

possible to decrease the amount of flavor violation in the left-handed sector by increasing the

UV localization of the left-handed light leptons. For instance, if we consider cl ∼ 0.65, since

f(0.65)/f(0.6) ∼ 1/5, this would result in a suppression factor of ∼ 1/25 in the contribution

of e4L to gLeµ. Also, for larger cil, the KK couplings gL1i become closer to the universal value

(obtained for cil = ∞), and the cancellation in gL1i − gL1e becomes more efficient. Of course, in

order to obtain the observed charged lepton masses, we have to increase the IR localization of

the right-handed light leptons, increasing at the same time the size of the flavor violation in the

right-handed sector. Roughly speaking we increase gReµ by a factor equal to the one suppressing

gLeµ. Therefore, we reach the minimum when the flavor violation in the left and right-handed

sectors are of the same order. By playing with the localization in this way, we can decrease

(increase) gLeµ (gReµ) by a factor ∼ 4, lowering the contribution to µ− − e− conversion by one

order of magnitude. More specifically, we want the size of the left-handed and right-handed

contributions to be of the same order

f(c1l )f(c
2
l )

f(c4l )
2

∼ f(−c1e)f(−c2e)
f(−c4e)2

. (68)
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We can satisfy (68) and obtain the correct spectrum by choosing the 5D fermion masses

c1l ≃ c2l ≃ 0.625 , ce ≃ −0.68 , cµ = −0.575 , (69)

and the usual localization for the fourth generation. For this configuration the contributions

from mixings between the first two generations are as large as the one from the fourth genera-

tion. We estimate them to be

(UL†GLUL)eµ ∼ (UR†GRUR)eµ ∼ 10−4 . (70)

With these estimates we obtain:

BR(µ− → e−e+e−) : mKK & 2 TeV , Bconv(µ
− − e−) : mKK & 4 TeV . (71)

In Fig. 2 (b) we show the results of the scan for this configuration. As expected, the constraints

now admit solutions with lighter values of mKK , as low as mKK ∼ 2.4 TeV.

In addition to optimal localization, there is another way to suppress lepton flavor violation.

This can be achieved with certain choices of embedding of the lepton sector in the 5D gauge

theory. Although up to now we have not addressed this point, we must make such choice in order

to define the phenomenology of the model since the 5D gauge symmetry is SU(2)L×SU(2)R×
U(1)X , and not just the SM electroweak gauge sector. This FCNC-suppressing mechanism is

independent of the localization of the zero modes. Instead, we will show in the next section

that there is a symmetry that protects the Z interactions of the left-handed fermions [23, 24].

3.1 Custodial symmetry for flavor violating Z couplings

As promised in the previous section, choosing the embedding of the lepton sector in the 5D

bulk gauge theory can significantly relax the lepton flavor-violation bounds, eliminating the

need for a higher KK mass scale. By properly choosing the representation of the leptons under

the 5D gauge symmetry, it is possible to protect the Z couplings from shifts generated by its

mixing with the KK resonances [23]. It is generally the case that if the 5D couplings of the

SU(2)L,R gauge groups are taken to be equal and the fermion involved satisfies T 3L = T 3R,

there will be a PLR custodial symmetry. In the present case, this symmetry can be realized

by embedding the left-handed doublet in a (2, 2)0, protecting the left-handed coupling of the

charged leptons, such as in Models 4 and 5 in the previous section. Note that we can not protect

the νL simultaneously, because T 3L = −T 3R for the νL in this case. Instead we would have
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to choose a (2, 2)−1 to protect the νL coupling. To protect the coupling of the right-handed

fermions, it is possible to invoke also a PC symmetry, realized when T 3L = T 3R = 0. Thus we

can choose a (1, 1)−1 or (1, 3)−1 for eR, as in Models 2 and 3, respectively. It is not possible to

protect both, the left-handed and right-handed couplings of charged leptons at the same time,

because they have different X charges.

We showed in the previous section that, for the region of the parameter space chosen in

Section 2.3, it is necessary to decrease the flavor-violating effects for the left-handed charged

leptons. This can be done in Embeddings 4 and 5. Therefore, the flavor-violating Z couplings

in the left-handed sector are suppressed, and we can lower the KK scale (see Ref.[24] for related

discussions). Although we have not made a detailed analysis, we expect that this choice of

embeddings would alleviate the tension from FCNC, allowing for a considerably lower value of

mKK .

Notice that the contributions to FCNC arising from direct KK exchange (as opposed to

the effects from mixing between Z(0) and Z(n)) are still present. However, these effects are

suppressed by a factor ∼ 1/f , and we expect this contribution to be sub-dominant.

4 Phenomenology

Many of the lepton properties in this framework are independent of the embeddings on the

higher dimensional gauge group, and for this reason they are robust predictions if there is

a fourth generation of leptons in 5D. In the following we will discuss some of these generic

properties, and then we will comment on some model-dependent properties.

4.1 Light KK Spectrum

An important prediction of the model is the presence of light KK leptons of the fourth generation

(charged and neutral), lighter than the gauge KK modes [18]. This can be understood by the

following reasons. The large 5D gauge symmetry (larger than the SM one) leads to 5D fermions

transforming under the full gauge transformations. To avoid an excess of zero-modes some of

the partners of e4 and ν4 have (±,∓) boundary conditions. For a 5D mass −1/2 . c . 1/2

the mass of the first KK mode of a right-handed fermion with (−,+) boundary conditions can

be approximated by:

mKK ≃ Ake−kL

√

1

2
− c , (72)
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where A ∼ 2 is approximately constant. Thus, the mass of the first right-handed KK mode

is parametrically smaller than the mass of a gauge KK mode, with the suppression given by
√

1/2− c. For a left-handed fermion with (−,+) boundary conditions a similar situation holds

changing c→ −c.
As discussed in Section 2, in order to obtain heavy leptons for the fourth generation, the 5D

masses have to be in the range: −1/2 . c4l,ν,e . 1/2. Moreover, since the see-saw mechanism

has a strong dependence with cν , we need c4ν & 0 to avoid a new light neutrino, experimentally

excluded.

From the above arguments and the lepton embeddings of Section 2.1 we obtain that the

first KK modes arising from the SU(2)R partners of e4 and ν4 are light. This is a consequence

of the large 5D gauge symmetry and the heaviness of the fourth generation4. In terms of the

4D dual description of the theory the light fermionic resonances arise as a consequence of the

large global symmetry of the strong sector and the fourth generation being almost composite

states.

We will consider the different embeddings of the previous section to study the range of

masses of the light KK fermions. As we see below, the existence of these light states is a

generic property present in all embeddings. Although we only show the results for Models 1

and 5, that have some important differences, we have explicitly checked that the range of masses

is similar for all the embeddings of Section 2.1. We have checked in our calculations that the

effects arising form generation mixing are not larger than 25%, thus we will neglect the mixings

between generations for this analysis, and we will consider just the fourth generation that will

lead to light KK fermions. For the purpose of this simplified discussion, we will consider that

the Higgs is localized in the IR boundary with a δ-function.

4.1.1 Model 1

After EWSB, there are two towers of leptons: one tower of charged fermions with a light

KK mode whose mass is controlled by cν (note that e′R(−+) has the appropriate boundary

conditions), and one tower of neutral fermions with a light KK mode whose mass is controlled

by ce (ν
′′

R(−+) has the appropriate boundary conditions). The spectrum of charged fermions

is given by

zeroes

[

fR
αl

fL
αl

+ (Mez1)
2

(

fR
αe

fL
αe

+
fR
αν

fL
αν

)]

|z0 , (73)

4A similar effect is present in the quark sector for fields with zero-modes giving rise to heavy fermions.
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where fL,R
αψ

is the KK wave function of the left (right)-handed charged fermion ψ and Me is the

Dirac mass from a localized IR Higgs. The spectrum of neutral fermions is given by a similar

equation.

Figure 3 shows the mass of the lightest charged (neutral) KK mode as a function of cν (ce),

and the prediction given by Eq. (72) with A = 2.3. We have made a random scan over the 5D

masses constraining −0.5 ≤ c4l,eν ≤ 0.5 and we have fixed Me,ν = 0.25 k e−kL, that corresponds

to Yukawas of order one. In Figure 4 we show the mass of the lightest charged KK versus

-0.4 -0.2 0.2 0.4

0.5

1

1.5

2

ce, cν

mν(ce), me(cν) [TeV]

Figure 3: Model 1. Red dots (black crosses) correspond to the mass of the lightest charged
(neutral) KK fermion as a function of cν (ce). The blue line is the prediction given by Eq. (72).
We have made a random scan with −0.5 ≤ c4l,eν ≤ 0.5 and we have fixed Me,ν = 0.25 k e−kL.

the mass of the zero mode ν4 using the same scan as in the previous plot. We can clearly see

that, since a heavy ν4 requires cν4 & 0, this model predicts a charged KK not heavier than

∼ 1.5 k e−kL (≃ 1.5 TeV for k e−kL ≃ 1 TeV).

The new fermions give contributions to the oblique parameters. The most important con-

straint comes from the contributions of the would be zero modes of the fourth generation to

the T parameter, that is constrained by electroweak precision measurements to be not much

larger than T ∼ 0.15. Fixing the leptonic contribution to be ∆T = 0.1 we constrain the

isospin splitting to be ∆m = |mν4 −me4 | ∼ 74 GeV. This result has important consequences

for the phenomenology, since ∆m < mW and then the leptons of the fourth generation will

preferentially decay to W + l, with l labeling the SM leptons. However this result depends

5The precise value of the bound on T depends on the value of the other electroweak observables in the model.
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Figure 4: Model 1. Mass of the zero mode ν4 as a function of the mass of the first KK charged
fermion e(1). We have varied −0.5 ≤ c4l,e,ν ≤ 0.5 and we have fixed Me,ν = 0.25/z1.

on the precise value of ∆T . For instance, for ∆T ∼ 0.3 we obtain ∆m ∼ 130 GeV> mW .

Thus, electroweak precision constraints prefer a small isospin splitting, although we can not

completely exclude the possibility ∆m > mW . The constraints on the T parameter exclude a

region of the parameter space of the 5D model. Demanding ∆T = 0.1 we keep ∼ 60% of the

parameter space in Model 1, where we have considered only the region of the parameter space

where ν4 and e4 are heavy enough. Thus, the result has a mild dependence on this lower limit.

For example, for mν4,e4 > 50 GeV (250 GeV) we keep 51% (72%) of the parameter space.

A similar analysis can be done for Models 2-4. In all these models we need c4ν & 0 to

obtain a heavy ν4, therefore light KK modes will arise from the SU(2)R partners of νR, that

is embedded in a triplet of SU(2)R. In Models 2 and 3 there is a light mode with the electron

quantum numbers, Q = −1, and there is also an exotic state χ with Q = −2, whereas in Model 4

χ has Q = +1. Since the left-handed doublet is embedded in a bi-doublet of SU(2)L×SU(2)R,

there are also light charged and exotic KK modes associated to the SU(2)R partners of LL, i.e.:

L′
L. In this case their masses are controlled by c4l . In Models 3 and 4 the right-handed electron

is embedded in a triplet of SU(2)R, thus there are also light states associated to the SU(2)R

partners of e4R, with the spectrum controlled by c4e. After the Higgs acquires a VEV, the fields

with the same electric charge are mixed, thus the mass of the light states can depend on the

parameters c4l,e,ν, according to Eq. (72). Let us discuss briefly Model 2, as an example: there

are light neutral sates for cl near −1/2, and there are light charged and exotic states for cl or

−cν near −1/2 (the last condition is similar to Model 1). As discussed previously, to obtain a
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heavy fourth generation we need −1/2 ≤ c4l,e ≤ 1/2 and 0 . c4ν ≤ 1/2, thus the last condition

guarantees the existence of light charged and exotic states associated to the νR partners, and

the other conditions can give an extra suppression in the mass of the first KK.

4.1.2 Model 5

We consider this model separately, due to its somewhat distinct features. In this case, ξν

is a singlet, implying that fermions with (−,+) boundary conditions arise from ξl and ξe.

As previously, to obtain a heavy e4 we need −1/2 . c41,e . 1/2. Thus there is a region

of the parameter space leading to light fermionic KK resonances (−1/2 . c4l . 0 and/or

0 . c4e . 1/2), and another region 0 . c4l . 1/2 and −1/2 . c4e . 0 where we can still obtain

a heavy fourth generation and the suppression in the KK mass is not so large. Thus, once we

select the region of the parameter space leading to heavy leptons, Model 5 will give, in general,

light fermionic resonances, but there are some regions where the suppression is small (roughly

20% of the allowed region). In Figure 5 we plot the KK mass in terms of the masses of e4 and

ν4, using MIR = 0.25k for the IR-localized Majorana mass. Besides the usual charged and

neutral states there is another state with Q = +1. After EWSB the mass eigenstates arise from

mixing between the upper component of L′ and χ in Eqs. (14) and (17).

Note that in this model there are no fields with (−+) boundary conditions and Q = −1, thus

there is no light KK associated to the electron, as can be seen in Figure 5. The contributions
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Figure 5: Model 5. Crosses (black), dots (red) and triangles (blue) correspond respectively to the
mass of the lightest charged, neutral, exotic KK fermions. On the left (right) we show the KK
mass as a function of the mass of the zero-mode electron (neutrino) of the fourth generation e4

(ν4). We have made a random scan over the parameter space with −0.5 ≤ c4l,e,ν ≤ 0.5.
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of the zero modes to the T parameter are similar to Model 1.

4.2 Couplings of Fourth Generation Leptons

In this section we study some features of the interactions involving fourth-generation leptons

that have an impact on their collider phenomenology. Since the IR localization of the fourth

generation is larger than the SM one, the following relation is satisfied: Mν,44
LR ≫ Mν,i4

LR for

i = 1, 2, 3, see Eq. (36). Using this result, to leading order we can write Uν as:

Uν ≃





Uν
3×3 03×2

02×3

[

1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]



 . (74)

Inserting Eq. (74) in (37) we obtain, at this level of approximation:

LCC ⊃
∑

α=1,2,3

g√
2
W+

µ ν̄
4
Lγ

µUL
4αe

α
L + h.c. . (75)

Therefore the ν4 decay is mostly determined by UL
4a, a = 1, 2, 3, i.e. only the mixings in the

charged sector are important. Moreover, since cil ≃ cl for i = 1, 2, 3, the model predicts that

all the branching ratios in the decay ν4 → lW are approximately equal. We have verified this

result in our numerical scan over the parameter space. This has important consequences for

collider searches.

An important aspect of these models is the strong coupling between the fourth generation

zero modes and the KK excitations of the gauge bosons. Thus, the zero-mode leptons of the

fourth generation are expected to be strongly coupled to the KK excitations of the electroweak

gauge bosons. The couplings of the zero-mode leptons to the KK excitations of the SM gauge

bosons: W (1)±, Z(1) and γ(1) are the same as the SM gauge couplings of the lighter three

generations, up to the enhancement resulting from the zero-mode IR localization, and small

flavor-violating corrections. On the other hand, the model has one more neutral gauge boson,

the Z
′(1), which has no zero mode since it corresponds to the broken-generator combination in

the breaking SU(2)R × U(1)X → U(1)Y . The couplings of zero-mode leptons, again in units

of the localization enhancement factor, are given in Table 1, where gR and gX are the SU(2)R

and U(1)X 5D gauge couplings divided by
√
L so as to render them dimensionless.

In addition, there are two charged SU(2)R KK gauge bosons, R
±(1)
µ , resulting in couplings

of the zero-mode leptons to KK leptons. Of particular interest are the charged couplings of
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Zero Mode E1 E2 E3 E4 E5

NL
1
2

g2
X√

g2
R
+g2

X

g2
R
/2+g2

X√
g2
R
+g2

X

g2
R
/2+g2

X√
g2
R
+g2

X

−1
2

g2
R√

g2
R
+g2

X

−1
2

g2
R√

g2
R
+g2

X

NR
1
2

√

g2R + g2X
√

g2R + g2X
√

g2R + g2X 0 0

EL
1
2

g2
X√

g2
R
+g2

X

g2
R
/2+g2

X√
g2
R
+g2

X

g2
R
/2+g2

X√
g2
R
+g2

X

−1
2

g2
R√

g2
R
+g2

X

−1
2

g2
R√

g2
R
+g2

X

ER
1
2

g2
X
−g2

R√
g2
X
+g2

R

g2
X√

g2
X
+g2

R

g2
X√

g2
X
+g2

R

− g2
R√

g2
X
+g2

R

− g2
R√

g2
X
+g2

R

Table 1: Couplings of zero-mode leptons to the Z’, in units of the dimensionless enhancement
from localization.

zero-mode fourth-generation leptons to a light KK lepton. For instance, in Model 1 the zero-

mode right-handed neutrino νR(++) in (7) couples through the charged right KK mode R±
µ to

the light KK mode e′R(−+) with strength gR/
√
2. This is also the case for the coupling between

the zero-mode right-handed electron eR(++), which couples through the charged right current

to its SU(2)R partner ν
′′

R. Similar charged couplings exist in Models 2, 3, 4 and 5, whenever

the zero-mode right-handed neutrino νR(++) or electron eR(++) belong to a triplet of SU(2)R.

These interactions are of interest since, as shown in Section 4.1, the right-handed KK leptons

with (−+) boundary conditions are lighter than the typical KK mass scale. Thus, due to the

strong coupling of the fourth-generation lepton zero-modes to both the KK gauge bosons and

fermions, the single production of a lepton KK mode in association with a fourth-generation

zero-mode lepton is a potentially important signal for these models.

Given the couplings above, we can study the phenomenology of fourth-generation leptons

at the LHC in the models presented here. The fourth-generation zero-mode leptons will be

produced via the s-channel exchange of the SM gauge bosons, as well as the KK gauge bosons

including the photon, W and Z KK excitations A(1), W±(1) and Z(1), as well as the KK

excitation coming from the combination of the generators T 3
R and X broken by the boundary

conditions on the IR brane, Z
′(1). They will also be produced through an s-channel Higgs.
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Finally, as it was shown in Section 3, there are lepton flavor violating interactions with the

Z and the heavier neutral resonances. These interactions allow, in principle, the production of a

charged lepton of the fourth generation e4 together with a light SM charged lepton through an s-

channel neutral vector Z or Z(n). Since all the left-handed light leptons have equal localization,

the interaction ē4LZe
i
L, i = 1, 2, 3, has the same strength for any flavor (a similar result holds

for Z(n)). Thus the production process Z,Z(n) → ē4Le
i
L and the decay e4L → ZeiL are almost

flavor independent. On the other hand, the right-handed interactions ē4RZe
i
R are stronger for

heavier leptons ei, thus for neutral right-handed currents the dominant production mechanism

is Z,Z(n) → ē4RτR and the dominant neutral decay is e4R → ZτR. The flavor-violating couplings,

however, are likely to be too small to be observed at the early stages of the LHC [25].

4.3 ν4R phenomenology

Although a detailed phenomenological study will be done elsewhere [26], we make here some

general remarks regarding the right-handed zero-mode neutrino, ν4R. We start with a brief

discussion of the production of ν4R at hadron colliders. In Models 1, 2 and 3 right-handed

neutrinos can be pair-produced through their couplings to Z ′(1), shown in Table 1. This is

not the case in Models 4 and 5. However, since the Yukawa couplings of the fourth-generation

neutrinos are large, the ν4R can be produced as a decay product of the Higgs, through gg →
h → ν4Lν

4
R. For a heavy Higgs such that mh > 2mν4 , with mν4 ∼ O(300) GeV, we obtain

a branching ratio BR(h → ν4Lν
4
R) ∼ (2 − 5)%, for mh ∼ (650 − 900) GeV. Adding the fact

that the presence of a full fourth generation increases significantly the Higgs production cross

section by gluon fusion over the usual SM value [6], this production mechanism for ν4R cannot

be neglected, not just in Models 4 and 5, but also in Models 1-3 [26].

Finally, in all cases ν4R decays promptly through the Dirac-mass mixing with ν4L into a W

and a light charged lepton. Additionally, in embeddings 1-4 (see Section 2.1), where the νR

is charged under the SU(2)R, the ν
4
R decay can proceed through a virtual charged KK vector

R±(n) and a virtual KK charged fermion e
′(n) of the fourth generation. R±(n) mixes via Higgs

mass insertions with the zero mode W (0) and e
′(n) mixes with the charged zero-mode fermions

ei(0). However, this modes will be suppressed by KK masses compared to the one mentioned

above.
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5 Conclusions

Extensions of the standard model with a fourth generation must address the question of why the

fourth generation neutrinos are so much heavier than the three-generation light neutrinos. In

addition, they must satisfy constraints from lepton flavor violation and reproduce the pattern

of mixings and mass differences of light neutrinos. We have addressed these questions in a

class of models in the context of theories with warped extra dimensions. In this scenario both

the charged lepton and the neutrino are heavy as a consequence of their localization in the

extra dimension. They are both IR-localized which results in a large overlap with the Higgs,

independently of whether this is an elementary scalar or an effective degree of freedom resulting

from the condensation of fourth-generation quarks. The models naturally have a UV-localized

Majorana mass term which results in a see-saw mechanism only efficient with neutrinos with

zero-mode wave-functions localized close to the UV brane. Thus, a consequence of this setup

is that the light neutrinos of the first three generations are mostly Majorana particles since

they have a significant overlap with the UV brane and therefore feel the effect of the Majorana

mass term. On the other hand, fourth-generation neutrinos are IR-localized and will be mostly

Dirac particles, since they have little overlap with the Majorana mass term.

The exception to this is the case where right-handed neutrinos come from singlets under

the bulk gauge symmetries (embedding 5 in Section 2.1). As a consequence, in addition to the

UV-localized Majorana term present in embeddings 1-4, there is an IR-localized Majorana mass

that only affects significantly the fourth generation neutrinos. The two Majorana components

are split with an order-one splitting, resulting in a potentially light Majorana fourth-generation

neutrino that could be as light as 100 GeV.

For all the possible embeddings, we have shown that in order to satisfy the existing con-

straints from neutrino mixings and in combination with the lepton spectrum the localization

of the lepton left-handed zero-mode doublets must be almost degenerate for the first three

generations, i.e. ciℓ = cℓ, for i = 1, 2, 3. Deviations from the equality cannot significantly exceed

1% in order to avoid a hierarchical mixing pattern in the light neutrino sector. Similarly, the

localization of the right-handed zero-mode neutrinos of the light three generations is chosen to

be the same in order to match the see-saw picture with a single suppression scale. This suggests

the presence of a flavor symmetry acting on UV-localized left-handed leptons and right-handed

neutrinos. We do not need to impose that the bulk masses of the right-handed charged leptons

be the same for the light generations. This freedom allows us to obtain the correct spectrum.
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The presence of flavor-violating interactions leads to several lepton flavor-violating processes.

We studied the impact of the experimental bounds on lepton flavor violating processes on the

parameter space of the model. We have found that, for generic embeddings, the KK mass

scale is bound to be mKK ∼> 4 TeV by the experimental limits on µ− → e−e+e−, whereas

considering the rate of µ− → e− conversion results in mKK ∼> 6 TeV, although there are some

small regions of parameter space where the FCNC effects are minimized and mKK ∼ 2.4 TeV

is allowed. We have shown that in two of the five embeddings proposed in Section 2.1, those we

called Model 4 and 5, it is possible to evade the lepton flavor violation bounds even with KK

masses as low as mKK ≃ 2.4 TeV, for larger regions of the parameter space. These embeddings

realize a custodial symmetry that protects the Z couplings to leptons.

The parameter space of the models is almost entirely determined by the bulk mass parame-

ters of the zero-mode leptons. This fixes the zero-mode mass spectrum of the fourth generation

as well as its couplings to the KK gauge bosons and the Higgs, through the enhancement factor

resulting from IR localization. This, together with the gauge couplings from Table 1, can be

used to study the phenomenology of the fourth-generation lepton sector at colliders. As shown

in the Table, these gauge couplings depend on the embedding of the leptons in the 5D gauge

theory. We considered five different possible embedding in Section 2.1. Although the gauge

couplings of the zero-mode leptons to the SM electroweak gauge bosons and their KK excita-

tions do not depend on the 5D embedding, their couplings to the Z
′(1), the KK mode of the

broken generator in SU(2)R × U(1)X → U(1)Y , do as it can be seen in Table 1. Furthermore,

in Model 5, the right-handed neutrino has no 5D gauge couplings. Thus, in this embedding,

the fourth-generation ν4R couples only through the Higgs sector. This implies that both its

production and decay must involve its Yukawa couplings. The dominant production of ν4R is

then through the s-channel Higgs, with the decay proceeding through the mass mixing with ν4L.

Another important prediction is the appearance of light KK leptons, as described in Sec-

tion 4.1. As shown in Figures 3, 4 and 5, KK leptons with (−+) boundary conditions can be

as light as 0.5 TeV and are generically considerably lighter than the KK gauge bosons. One

important consequence is that it is more kinematically favorable to singly produce a KK lepton

in association with a zero-mode lepton, particularly if this is a fourth generation lepton since

the corresponding effective gauge coupling would be enhanced due to its IR localization. This

and other aspects of the phenomenology of the lepton sector of a fourth-generation at the LHC,

including its production and decay, will be studied in detail in a future publication [26].
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A Perturbative diagonalization of the neutrino mass

ν contains four generations of neutrinos, we split them in the following way:

νt = (νe, νµ, ντ , ν4) = (νa, ν4) , a = 1, 2, 3 , (76)

thus Latin indexes label the light generations. Using this notation we can write the Dirac and

Majorana mass matrices as:

Mν
RR =

[

Mab
RR Ma4

RR

M4b
RR M44

RR

]

, Mν
LR =

[

Mab
LR Ma4

LR

M4b
LR M44

LR

]

. (77)

We integrate out the heavy neutrinos νaR at tree level, and obtain the effective mass term of

Eq. (32), with Meff given by:

Meff =





−Mab
LR(M

bc
RR)

−1M cd
RL −Mab

LR(M
bc
RR)

−1M c4
RL Ma4

LR −Mab
LR(M

bc
RR)

−1M c4
RR

−M4b
LR(M

bc
RR)

−1M cd
RL −M4b

LR(M
bc
RR)

−1M c4
RL M44

LR −M4b
LR(M

bc
RR)

−1M c4
RR

M4d
RL −M4b

RR(M
bc
RR)

−1M cd
RL M44

RL −M4b
RR(M

bc
RR)

−1M c4
RL M44

RR −M4b
RR(M

bc
RR)

−1M c4
RR



 .

(78)

We can see that most of the entries ofMeff are suppressed by the see-saw mechanism. Moreover,

since ν4R is localized towards the IR and the right-handed Majorana mass is localized in the UV,

M44
RR is very suppressed also (one can check that for the range of parameters interesting for the

phenomenology, M44
RR is several orders of magnitude smaller than the entries not suppressed

by the see-saw). Therefore, at leading order, we obtain an effective theory with two heavy

Majorana states described by Eqs. (35) and (36). At this level of approximation, there is

a degenerate subspace o dimension 3 with eigenvalues equal to zero, corresponding to three

massless neutrinos. These massless eigenstates have no projection on the fifth component at

this order. Introducing a spurious infinitesimal ǫ we can compute the light eigenvalues at

leading order:

det(M ǫ
eff − ǫλ) = 0 , M ǫ

eff =

[

ǫSij M i4

M4i ǫT

]

, i, j = 1, . . . 4 , (79)

where we explicitly show the suppressed entries of Meff . At leading order in ǫ (i.e.: O(ǫ3))

this equation has three solutions. Once we obtain the light eigenvalues λa, we can write, at

leading order, a explicit expression for the light eigenvectors in terms of the 4×4 matrix S and

the dimension 4 vector M i4. For simplicity we split the light eigenvectors isolating the fifth

component:

va =

[

vai
va5

]

, a = 1, 2, 3 , i = 1, . . . 4 , (80)
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where a labels the light eigenvectors and i labels the first four components of each vector. Thus

vai and va5 are given by the following equations in a space of dimension 4:

|va5 |2 =
(

M †[(S − λa)−1]†(S − λa)−1M
)−1

, (81)

vai = −va5 [(S − λa)−1M ]i , (82)

where, although we have not explicitly shown the indexes, M = M i4 is a vector of dimension

4, and (S − λa)−1 is the inverse of matrix (S − λa), acting on M .

B Scan

There is a large set of solutions giving the right spectrum and mixings in the leptonic sector,

together with a heavy fourth generation. As discussed in Section 2.3, there are also some

additional constraints arising from the phenomenology, like µ→ eγ. We show here a set of 5D

parameters satisfying all these constraints, with light neutrino mass splittings given by:

∆m2
sol ≃ 1.1 10−4eV2 , ∆m2

atm ≃ 2.6 10−3eV2 . (83)

We have scanned over the parameter space, considering real symmetric Yukawas and the identity

for λR in order to simplify the computation. The 5D Yukawa matrices are approximately given

by:

λe =









2.5 1.1 0.6 −0.6
1.1 1.1 −0.5 −0.6
0.6 −0.5 −0.1 −1.4
−0.6 −0.6 1.4 1.1









, λν =









−2.4 0.8 −1.1 −0.6
0.8 3.9 −1.5 −1.4
−1.1 −1.5 2.8 0.7
−0.6 −1.4 0.7 1.1









, λR = 14×4 . (84)

The spectrum of zero modes reproduces the charged leptons of the SM, with heavy leptons:

m4
ν ≃ m4

e = 300 GeV, and light neutrinos with masses approximately given by [12]:

m1
ν = 18 meV , m2

ν = 53 meV , m3
ν = 54 meV . (85)

The corresponding mixing matrix V is given by:

V =













0.82 −0.34 0.46 −0.04
0.57 0.39 −0.72 0.03
0.06 0.85 0.52 0.01
−0.01 0.02 −0.02 −0.71
−0.01 0.02 −0.02 −0.71













, (86)
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